Current File : //proc/thread-self/root/usr/include/mysql/server/private/structs.h |
#ifndef STRUCTS_INCLUDED
#define STRUCTS_INCLUDED
/* Copyright (c) 2000, 2010, Oracle and/or its affiliates.
Copyright (c) 2009, 2019, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
/* The old structures from unireg */
#include "sql_plugin.h" /* plugin_ref */
#include "sql_const.h" /* MAX_REFLENGTH */
#include "my_time.h" /* enum_mysql_timestamp_type */
#include "thr_lock.h" /* thr_lock_type */
#include "my_base.h" /* ha_rows, ha_key_alg */
#include <mysql_com.h> /* USERNAME_LENGTH */
#include "sql_bitmap.h"
struct TABLE;
class Type_handler;
class Field;
class Index_statistics;
struct Lex_ident_cli_st;
class THD;
/* Array index type for table.field[] */
typedef uint16 field_index_t;
typedef struct st_date_time_format {
uchar positions[8];
char time_separator; /* Separator between hour and minute */
uint flag; /* For future */
LEX_CSTRING format;
} DATE_TIME_FORMAT;
typedef struct st_keyfile_info { /* used with ha_info() */
uchar ref[MAX_REFLENGTH]; /* Pointer to current row */
uchar dupp_ref[MAX_REFLENGTH]; /* Pointer to dupp row */
uint ref_length; /* Length of ref (1-8) */
uint block_size; /* index block size */
File filenr; /* (uniq) filenr for table */
ha_rows records; /* Records i datafilen */
ha_rows deleted; /* Deleted records */
ulonglong data_file_length; /* Length off data file */
ulonglong max_data_file_length; /* Length off data file */
ulonglong index_file_length;
ulonglong max_index_file_length;
ulonglong delete_length; /* Free bytes */
ulonglong auto_increment_value;
int errkey,sortkey; /* Last errorkey and sorted by */
time_t create_time; /* When table was created */
time_t check_time;
time_t update_time;
ulong mean_rec_length; /* physical reclength */
} KEYFILE_INFO;
typedef struct st_key_part_info { /* Info about a key part */
Field *field; /* the Field object for the indexed
prefix of the original table Field.
NOT necessarily the original Field */
uint offset; /* Offset in record (from 0) */
uint null_offset; /* Offset to null_bit in record */
/* Length of key part in bytes, excluding NULL flag and length bytes */
uint length;
/*
Number of bytes required to store the keypart value. This may be
different from the "length" field as it also counts
- possible NULL-flag byte (see HA_KEY_NULL_LENGTH)
- possible HA_KEY_BLOB_LENGTH bytes needed to store actual value length.
*/
uint store_length;
uint16 key_type;
field_index_t fieldnr; /* Fieldnr begins counting from 1 */
uint16 key_part_flag; /* 0 or HA_REVERSE_SORT */
uint8 type;
uint8 null_bit; /* Position to null_bit */
} KEY_PART_INFO ;
class engine_option_value;
struct ha_index_option_struct;
typedef struct st_key {
uint key_length; /* total length of user defined key parts */
ulong flags; /* dupp key and pack flags */
uint user_defined_key_parts; /* How many key_parts */
uint usable_key_parts; /* Should normally be = user_defined_key_parts */
uint ext_key_parts; /* Number of key parts in extended key */
ulong ext_key_flags; /* Flags for extended key */
/*
Parts of primary key that are in the extension of this index.
Example: if this structure describes idx1, which is defined as
INDEX idx1 (pk2, col2)
and pk is defined as:
PRIMARY KEY (pk1, pk2)
then
pk1 is in the extension idx1, ext_key_part_map.is_set(0) == true
pk2 is explicitly present in idx1, it is not in the extension, so
ext_key_part_map.is_set(1) == false
*/
key_part_map ext_key_part_map;
/*
Bitmap of indexes having common parts with this index
(only key parts from key definitions are taken into account)
*/
key_map overlapped;
/* Set of keys constraint correlated with this key */
key_map constraint_correlated;
LEX_CSTRING name;
uint block_size;
enum ha_key_alg algorithm;
/*
The flag is on if statistical data for the index prefixes
has to be taken from the system statistical tables.
*/
bool is_statistics_from_stat_tables;
/*
Note that parser is used when the table is opened for use, and
parser_name is used when the table is being created.
*/
union
{
plugin_ref parser; /* Fulltext [pre]parser */
LEX_CSTRING *parser_name; /* Fulltext [pre]parser name */
};
KEY_PART_INFO *key_part;
/* Unique name for cache; db + \0 + table_name + \0 + key_name + \0 */
uchar *cache_name;
/*
Array of AVG(#records with the same field value) for 1st ... Nth key part.
0 means 'not known'.
For temporary heap tables this member is NULL.
*/
ulong *rec_per_key;
/*
This structure is used for statistical data on the index
that has been read from the statistical table index_stat
*/
Index_statistics *read_stats;
/*
This structure is used for statistical data on the index that
is collected by the function collect_statistics_for_table
*/
Index_statistics *collected_stats;
TABLE *table;
LEX_CSTRING comment;
/** reference to the list of options or NULL */
engine_option_value *option_list;
ha_index_option_struct *option_struct; /* structure with parsed options */
double actual_rec_per_key(uint i) const;
bool without_overlaps;
/*
TRUE if index needs to be ignored
*/
bool is_ignored;
} KEY;
struct st_join_table;
typedef struct st_reginfo { /* Extra info about reg */
struct st_join_table *join_tab; /* Used by SELECT() */
enum thr_lock_type lock_type; /* How database is used */
bool skip_locked;
bool not_exists_optimize;
/*
TRUE <=> range optimizer found that there is no rows satisfying
table conditions.
*/
bool impossible_range;
} REGINFO;
/*
Originally MySQL used MYSQL_TIME structure inside server only, but since
4.1 it's exported to user in the new client API. Define aliases for
new names to keep existing code simple.
*/
typedef enum enum_mysql_timestamp_type timestamp_type;
typedef struct {
ulong year,month,day,hour;
ulonglong minute,second,second_part;
bool neg;
} INTERVAL;
typedef struct st_known_date_time_format {
const char *format_name;
const char *date_format;
const char *datetime_format;
const char *time_format;
} KNOWN_DATE_TIME_FORMAT;
extern const char *show_comp_option_name[];
typedef int *(*update_var)(THD *, struct st_mysql_show_var *);
struct USER_AUTH : public Sql_alloc
{
LEX_CSTRING plugin, auth_str, pwtext;
USER_AUTH *next;
USER_AUTH() : next(NULL)
{
plugin.str= auth_str.str= "";
pwtext.str= NULL;
plugin.length= auth_str.length= pwtext.length= 0;
}
};
struct AUTHID
{
LEX_CSTRING user, host;
void init() { memset(this, 0, sizeof(*this)); }
void copy(MEM_ROOT *root, const LEX_CSTRING *usr, const LEX_CSTRING *host);
bool is_role() const { return user.str[0] && !host.str[0]; }
void set_lex_string(LEX_CSTRING *l, char *buf)
{
if (is_role())
*l= user;
else
{
l->str= buf;
l->length= strxmov(buf, user.str, "@", host.str, NullS) - buf;
}
}
void parse(const char *str, size_t length);
bool read_from_mysql_proc_row(THD *thd, TABLE *table);
};
struct LEX_USER: public AUTHID
{
USER_AUTH *auth;
bool has_auth()
{
return auth && (auth->plugin.length || auth->auth_str.length || auth->pwtext.length);
}
};
/*
This structure specifies the maximum amount of resources which
can be consumed by each account. Zero value of a member means
there is no limit.
*/
typedef struct user_resources {
/* Maximum number of queries/statements per hour. */
uint questions;
/*
Maximum number of updating statements per hour (which statements are
updating is defined by sql_command_flags array).
*/
uint updates;
/* Maximum number of connections established per hour. */
uint conn_per_hour;
/*
Maximum number of concurrent connections. If -1 then no new
connections allowed
*/
int user_conn;
/* Max query timeout */
double max_statement_time;
/*
Values of this enum and specified_limits member are used by the
parser to store which user limits were specified in GRANT statement.
*/
enum {QUERIES_PER_HOUR= 1, UPDATES_PER_HOUR= 2, CONNECTIONS_PER_HOUR= 4,
USER_CONNECTIONS= 8, MAX_STATEMENT_TIME= 16};
uint specified_limits;
} USER_RESOURCES;
/*
This structure is used for counting resources consumed and for checking
them against specified user limits.
*/
typedef struct user_conn {
/*
Pointer to user+host key (pair separated by '\0') defining the entity
for which resources are counted (By default it is user account thus
priv_user/priv_host pair is used. If --old-style-user-limits option
is enabled, resources are counted for each user+host separately).
*/
char *user;
/* Pointer to host part of the key. */
char *host;
/**
The moment of time when per hour counters were reset last time
(i.e. start of "hour" for conn_per_hour, updates, questions counters).
*/
ulonglong reset_utime;
/* Total length of the key. */
uint len;
/* Current amount of concurrent connections for this account. */
int connections;
/*
Current number of connections per hour, number of updating statements
per hour and total number of statements per hour for this account.
*/
uint conn_per_hour, updates, questions;
/* Maximum amount of resources which account is allowed to consume. */
USER_RESOURCES user_resources;
} USER_CONN;
typedef struct st_user_stats
{
char user[MY_MAX(USERNAME_LENGTH, LIST_PROCESS_HOST_LEN) + 1];
// Account name the user is mapped to when this is a user from mapped_user.
// Otherwise, the same value as user.
char priv_user[MY_MAX(USERNAME_LENGTH, LIST_PROCESS_HOST_LEN) + 1];
uint user_name_length;
uint total_connections;
uint total_ssl_connections;
uint concurrent_connections;
time_t connected_time; // in seconds
ha_rows rows_read, rows_sent;
ha_rows rows_updated, rows_deleted, rows_inserted;
ulonglong bytes_received;
ulonglong bytes_sent;
ulonglong binlog_bytes_written;
ulonglong select_commands, update_commands, other_commands;
ulonglong commit_trans, rollback_trans;
ulonglong denied_connections, lost_connections, max_statement_time_exceeded;
ulonglong access_denied_errors;
ulonglong empty_queries;
double busy_time; // in seconds
double cpu_time; // in seconds
} USER_STATS;
typedef struct st_table_stats
{
char table[NAME_LEN * 2 + 2]; // [db] + '\0' + [table] + '\0'
size_t table_name_length;
ulonglong rows_read, rows_changed;
ulonglong rows_changed_x_indexes;
/* Stores enum db_type, but forward declarations cannot be done */
int engine_type;
} TABLE_STATS;
typedef struct st_index_stats
{
// [db] + '\0' + [table] + '\0' + [index] + '\0'
char index[NAME_LEN * 3 + 3];
size_t index_name_length; /* Length of 'index' */
ulonglong rows_read;
} INDEX_STATS;
/* Bits in form->update */
#define REG_MAKE_DUPP 1U /* Make a copy of record when read */
#define REG_NEW_RECORD 2U /* Write a new record if not found */
#define REG_UPDATE 4U /* Uppdate record */
#define REG_DELETE 8U /* Delete found record */
#define REG_PROG 16U /* User is updating database */
#define REG_CLEAR_AFTER_WRITE 32U
#define REG_MAY_BE_UPDATED 64U
#define REG_AUTO_UPDATE 64U /* Used in D-forms for scroll-tables */
#define REG_OVERWRITE 128U
#define REG_SKIP_DUP 256U
/* Bits in form->status */
#define STATUS_NO_RECORD (1U+2U) /* Record isn't usable */
#define STATUS_GARBAGE 1U
#define STATUS_NOT_FOUND 2U /* No record in database when needed */
#define STATUS_NO_PARENT 4U /* Parent record wasn't found */
#define STATUS_NOT_READ 8U /* Record isn't read */
#define STATUS_UPDATED 16U /* Record is updated by formula */
#define STATUS_NULL_ROW 32U /* table->null_row is set */
#define STATUS_DELETED 64U
/*
Such interval is "discrete": it is the set of
{ auto_inc_interval_min + k * increment,
0 <= k <= (auto_inc_interval_values-1) }
Where "increment" is maintained separately by the user of this class (and is
currently only thd->variables.auto_increment_increment).
It mustn't derive from Sql_alloc, because SET INSERT_ID needs to
allocate memory which must stay allocated for use by the next statement.
*/
class Discrete_interval {
private:
ulonglong interval_min;
ulonglong interval_values;
ulonglong interval_max; // excluded bound. Redundant.
public:
Discrete_interval *next; // used when linked into Discrete_intervals_list
void replace(ulonglong start, ulonglong val, ulonglong incr)
{
interval_min= start;
interval_values= val;
interval_max= (val == ULONGLONG_MAX) ? val : start + val * incr;
}
Discrete_interval(ulonglong start, ulonglong val, ulonglong incr) :
next(NULL) { replace(start, val, incr); };
Discrete_interval() : next(NULL) { replace(0, 0, 0); };
ulonglong minimum() const { return interval_min; };
ulonglong values() const { return interval_values; };
ulonglong maximum() const { return interval_max; };
/*
If appending [3,5] to [1,2], we merge both in [1,5] (they should have the
same increment for that, user of the class has to ensure that). That is
just a space optimization. Returns 0 if merge succeeded.
*/
bool merge_if_contiguous(ulonglong start, ulonglong val, ulonglong incr)
{
if (interval_max == start)
{
if (val == ULONGLONG_MAX)
{
interval_values= interval_max= val;
}
else
{
interval_values+= val;
interval_max= start + val * incr;
}
return 0;
}
return 1;
};
};
/* List of Discrete_interval objects */
class Discrete_intervals_list {
private:
Discrete_interval *head;
Discrete_interval *tail;
/*
When many intervals are provided at the beginning of the execution of a
statement (in a replication slave or SET INSERT_ID), "current" points to
the interval being consumed by the thread now (so "current" goes from
"head" to "tail" then to NULL).
*/
Discrete_interval *current;
uint elements; // number of elements
void set_members(Discrete_interval *h, Discrete_interval *t,
Discrete_interval *c, uint el)
{
head= h;
tail= t;
current= c;
elements= el;
}
void operator=(Discrete_intervals_list &); /* prevent use of these */
Discrete_intervals_list(const Discrete_intervals_list &);
public:
Discrete_intervals_list() : head(NULL), current(NULL), elements(0) {};
void empty_no_free()
{
set_members(NULL, NULL, NULL, 0);
}
void empty()
{
for (Discrete_interval *i= head; i;)
{
Discrete_interval *next= i->next;
delete i;
i= next;
}
empty_no_free();
}
void copy_shallow(const Discrete_intervals_list * dli)
{
head= dli->get_head();
tail= dli->get_tail();
current= dli->get_current();
elements= dli->nb_elements();
}
void swap (Discrete_intervals_list * dli)
{
Discrete_interval *h, *t, *c;
uint el;
h= dli->get_head();
t= dli->get_tail();
c= dli->get_current();
el= dli->nb_elements();
dli->copy_shallow(this);
set_members(h, t, c, el);
}
const Discrete_interval* get_next()
{
Discrete_interval *tmp= current;
if (current != NULL)
current= current->next;
return tmp;
}
~Discrete_intervals_list() { empty(); };
bool append(ulonglong start, ulonglong val, ulonglong incr);
bool append(Discrete_interval *interval);
ulonglong minimum() const { return (head ? head->minimum() : 0); };
ulonglong maximum() const { return (head ? tail->maximum() : 0); };
uint nb_elements() const { return elements; }
Discrete_interval* get_head() const { return head; };
Discrete_interval* get_tail() const { return tail; };
Discrete_interval* get_current() const { return current; };
};
/*
DDL options:
- CREATE IF NOT EXISTS
- DROP IF EXISTS
- CREATE LIKE
- REPLACE
*/
struct DDL_options_st
{
public:
enum Options
{
OPT_NONE= 0,
OPT_IF_NOT_EXISTS= 2, // CREATE TABLE IF NOT EXISTS
OPT_LIKE= 4, // CREATE TABLE LIKE
OPT_OR_REPLACE= 16, // CREATE OR REPLACE TABLE
OPT_OR_REPLACE_SLAVE_GENERATED= 32,// REPLACE was added on slave, it was
// not in the original query on master.
OPT_IF_EXISTS= 64,
OPT_CREATE_SELECT= 128 // CREATE ... SELECT
};
private:
Options m_options;
public:
Options create_like_options() const
{
return (DDL_options_st::Options)
(((uint) m_options) & (OPT_IF_NOT_EXISTS | OPT_OR_REPLACE));
}
void init() { m_options= OPT_NONE; }
void init(Options options) { m_options= options; }
void set(Options other)
{
m_options= other;
}
void set(const DDL_options_st other)
{
m_options= other.m_options;
}
bool if_not_exists() const { return m_options & OPT_IF_NOT_EXISTS; }
bool or_replace() const { return m_options & OPT_OR_REPLACE; }
bool or_replace_slave_generated() const
{ return m_options & OPT_OR_REPLACE_SLAVE_GENERATED; }
bool like() const { return m_options & OPT_LIKE; }
bool if_exists() const { return m_options & OPT_IF_EXISTS; }
bool is_create_select() const { return m_options & OPT_CREATE_SELECT; }
void add(const DDL_options_st::Options other)
{
m_options= (Options) ((uint) m_options | (uint) other);
}
void add(const DDL_options_st &other)
{
add(other.m_options);
}
DDL_options_st operator|(const DDL_options_st &other)
{
add(other.m_options);
return *this;
}
DDL_options_st operator|=(DDL_options_st::Options other)
{
add(other);
return *this;
}
};
class DDL_options: public DDL_options_st
{
public:
DDL_options() { init(); }
DDL_options(Options options) { init(options); }
DDL_options(const DDL_options_st &options)
{ DDL_options_st::operator=(options); }
};
struct Lex_length_and_dec_st
{
private:
const char *m_length;
const char *m_dec;
public:
void set(const char *length, const char *dec)
{
m_length= length;
m_dec= dec;
}
const char *length() const { return m_length; }
const char *dec() const { return m_dec; }
};
struct Lex_field_type_st: public Lex_length_and_dec_st
{
private:
const Type_handler *m_handler;
void set(const Type_handler *handler, const char *length, const char *dec)
{
m_handler= handler;
Lex_length_and_dec_st::set(length, dec);
}
public:
void set(const Type_handler *handler, Lex_length_and_dec_st length_and_dec)
{
m_handler= handler;
Lex_length_and_dec_st::operator=(length_and_dec);
}
void set_handler_length_flags(const Type_handler *handler, const char *length,
uint32 flags);
void set(const Type_handler *handler, const char *length)
{
set(handler, length, 0);
}
void set(const Type_handler *handler)
{
set(handler, 0, 0);
}
void set_handler(const Type_handler *handler)
{
m_handler= handler;
}
const Type_handler *type_handler() const { return m_handler; }
};
struct Lex_dyncol_type_st: public Lex_length_and_dec_st
{
private:
int m_type; // enum_dynamic_column_type is not visible here, so use int
public:
void set(int type, const char *length, const char *dec)
{
m_type= type;
Lex_length_and_dec_st::set(length, dec);
}
void set(int type, Lex_length_and_dec_st length_and_dec)
{
m_type= type;
Lex_length_and_dec_st::operator=(length_and_dec);
}
void set(int type, const char *length)
{
set(type, length, 0);
}
void set(int type)
{
set(type, 0, 0);
}
int dyncol_type() const { return m_type; }
};
struct Lex_spblock_handlers_st
{
public:
int hndlrs;
void init(int count) { hndlrs= count; }
};
struct Lex_spblock_st: public Lex_spblock_handlers_st
{
public:
int vars;
int conds;
int curs;
void init()
{
vars= conds= hndlrs= curs= 0;
}
void init_using_vars(uint nvars)
{
vars= nvars;
conds= hndlrs= curs= 0;
}
void join(const Lex_spblock_st &b1, const Lex_spblock_st &b2)
{
vars= b1.vars + b2.vars;
conds= b1.conds + b2.conds;
hndlrs= b1.hndlrs + b2.hndlrs;
curs= b1.curs + b2.curs;
}
};
class Lex_spblock: public Lex_spblock_st
{
public:
Lex_spblock() { init(); }
Lex_spblock(const Lex_spblock_handlers_st &other)
{
vars= conds= curs= 0;
hndlrs= other.hndlrs;
}
};
struct Lex_for_loop_bounds_st
{
public:
class sp_assignment_lex *m_index; // The first iteration value (or cursor)
class sp_assignment_lex *m_target_bound; // The last iteration value
int8 m_direction;
bool m_implicit_cursor;
bool is_for_loop_cursor() const { return m_target_bound == NULL; }
};
class Lex_for_loop_bounds_intrange: public Lex_for_loop_bounds_st
{
public:
Lex_for_loop_bounds_intrange(int8 direction,
class sp_assignment_lex *left_expr,
class sp_assignment_lex *right_expr)
{
m_direction= direction;
m_index= direction > 0 ? left_expr : right_expr;
m_target_bound= direction > 0 ? right_expr : left_expr;
m_implicit_cursor= false;
}
};
struct Lex_for_loop_st
{
public:
class sp_variable *m_index; // The first iteration value (or cursor)
class sp_variable *m_target_bound; // The last iteration value
int m_cursor_offset;
int8 m_direction;
bool m_implicit_cursor;
void init()
{
m_index= 0;
m_target_bound= 0;
m_cursor_offset= 0;
m_direction= 0;
m_implicit_cursor= false;
}
bool is_for_loop_cursor() const { return m_target_bound == NULL; }
bool is_for_loop_explicit_cursor() const
{
return is_for_loop_cursor() && !m_implicit_cursor;
}
};
enum trim_spec { TRIM_LEADING, TRIM_TRAILING, TRIM_BOTH };
struct Lex_trim_st
{
Item *m_remove;
Item *m_source;
trim_spec m_spec;
public:
void set(trim_spec spec, Item *remove, Item *source)
{
m_spec= spec;
m_remove= remove;
m_source= source;
}
void set(trim_spec spec, Item *source)
{
set(spec, NULL, source);
}
Item *make_item_func_trim_std(THD *thd) const;
Item *make_item_func_trim_oracle(THD *thd) const;
};
class Lex_trim: public Lex_trim_st
{
public:
Lex_trim(trim_spec spec, Item *source) { set(spec, source); }
};
class Lex_substring_spec_st
{
public:
Item *m_subject;
Item *m_from;
Item *m_for;
static Lex_substring_spec_st init(Item *subject,
Item *from,
Item *xfor= NULL)
{
Lex_substring_spec_st res;
res.m_subject= subject;
res.m_from= from;
res.m_for= xfor;
return res;
}
};
class st_select_lex;
class Lex_select_lock
{
public:
struct
{
uint defined_lock:1;
uint update_lock:1;
uint defined_timeout:1;
uint skip_locked:1;
};
ulong timeout;
void empty()
{
defined_lock= update_lock= defined_timeout= skip_locked= FALSE;
timeout= 0;
}
void set_to(st_select_lex *sel);
};
class Lex_select_limit
{
public:
/* explicit LIMIT clause was used */
bool explicit_limit;
bool with_ties;
Item *select_limit, *offset_limit;
void clear()
{
explicit_limit= FALSE; // No explicit limit given by user
with_ties= FALSE; // No use of WITH TIES operator
select_limit= NULL; // denotes the default limit = HA_POS_ERROR
offset_limit= NULL; // denotes the default offset = 0
}
};
struct st_order;
class Load_data_param
{
protected:
CHARSET_INFO *m_charset; // Character set of the file
ulonglong m_fixed_length; // Sum of target field lengths for fixed format
bool m_is_fixed_length;
bool m_use_blobs;
public:
Load_data_param(CHARSET_INFO *cs, bool is_fixed_length):
m_charset(cs),
m_fixed_length(0),
m_is_fixed_length(is_fixed_length),
m_use_blobs(false)
{ }
bool add_outvar_field(THD *thd, const Field *field);
bool add_outvar_user_var(THD *thd);
CHARSET_INFO *charset() const { return m_charset; }
bool is_fixed_length() const { return m_is_fixed_length; }
bool use_blobs() const { return m_use_blobs; }
};
class Load_data_outvar
{
public:
virtual ~Load_data_outvar() = default;
virtual bool load_data_set_null(THD *thd, const Load_data_param *param)= 0;
virtual bool load_data_set_value(THD *thd, const char *pos, uint length,
const Load_data_param *param)= 0;
virtual bool load_data_set_no_data(THD *thd, const Load_data_param *param)= 0;
virtual void load_data_print_for_log_event(THD *thd, class String *to) const= 0;
virtual bool load_data_add_outvar(THD *thd, Load_data_param *param) const= 0;
virtual uint load_data_fixed_length() const= 0;
};
class Timeval: public timeval
{
protected:
Timeval() = default;
public:
Timeval(my_time_t sec, ulong usec)
{
tv_sec= sec;
/*
Since tv_usec is not always of type ulong, cast usec parameter
explicitly to uint to avoid compiler warnings about losing
integer precision.
*/
DBUG_ASSERT(usec < 1000000);
tv_usec= (uint)usec;
}
explicit Timeval(const timeval &tv)
:timeval(tv)
{ }
};
#endif /* STRUCTS_INCLUDED */