Current File : //home/tradevaly/www/node_modules/echarts/src/util/number.js
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements.  See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership.  The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License.  You may obtain a copy of the License at
*
*   http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied.  See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*
* A third-party license is embeded for some of the code in this file:
* The method "quantile" was copied from "d3.js".
* (See more details in the comment of the method below.)
* The use of the source code of this file is also subject to the terms
* and consitions of the license of "d3.js" (BSD-3Clause, see
* </licenses/LICENSE-d3>).
*/

import * as zrUtil from 'zrender/src/core/util';

var RADIAN_EPSILON = 1e-4;

function _trim(str) {
    return str.replace(/^\s+|\s+$/g, '');
}

/**
 * Linear mapping a value from domain to range
 * @memberOf module:echarts/util/number
 * @param  {(number|Array.<number>)} val
 * @param  {Array.<number>} domain Domain extent domain[0] can be bigger than domain[1]
 * @param  {Array.<number>} range  Range extent range[0] can be bigger than range[1]
 * @param  {boolean} clamp
 * @return {(number|Array.<number>}
 */
export function linearMap(val, domain, range, clamp) {
    var subDomain = domain[1] - domain[0];
    var subRange = range[1] - range[0];

    if (subDomain === 0) {
        return subRange === 0
            ? range[0]
            : (range[0] + range[1]) / 2;
    }

    // Avoid accuracy problem in edge, such as
    // 146.39 - 62.83 === 83.55999999999999.
    // See echarts/test/ut/spec/util/number.js#linearMap#accuracyError
    // It is a little verbose for efficiency considering this method
    // is a hotspot.
    if (clamp) {
        if (subDomain > 0) {
            if (val <= domain[0]) {
                return range[0];
            }
            else if (val >= domain[1]) {
                return range[1];
            }
        }
        else {
            if (val >= domain[0]) {
                return range[0];
            }
            else if (val <= domain[1]) {
                return range[1];
            }
        }
    }
    else {
        if (val === domain[0]) {
            return range[0];
        }
        if (val === domain[1]) {
            return range[1];
        }
    }

    return (val - domain[0]) / subDomain * subRange + range[0];
}

/**
 * Convert a percent string to absolute number.
 * Returns NaN if percent is not a valid string or number
 * @memberOf module:echarts/util/number
 * @param {string|number} percent
 * @param {number} all
 * @return {number}
 */
export function parsePercent(percent, all) {
    switch (percent) {
        case 'center':
        case 'middle':
            percent = '50%';
            break;
        case 'left':
        case 'top':
            percent = '0%';
            break;
        case 'right':
        case 'bottom':
            percent = '100%';
            break;
    }
    if (typeof percent === 'string') {
        if (_trim(percent).match(/%$/)) {
            return parseFloat(percent) / 100 * all;
        }

        return parseFloat(percent);
    }

    return percent == null ? NaN : +percent;
}

/**
 * (1) Fix rounding error of float numbers.
 * (2) Support return string to avoid scientific notation like '3.5e-7'.
 *
 * @param {number} x
 * @param {number} [precision]
 * @param {boolean} [returnStr]
 * @return {number|string}
 */
export function round(x, precision, returnStr) {
    if (precision == null) {
        precision = 10;
    }
    // Avoid range error
    precision = Math.min(Math.max(0, precision), 20);
    x = (+x).toFixed(precision);
    return returnStr ? x : +x;
}

/**
 * asc sort arr.
 * The input arr will be modified.
 *
 * @param {Array} arr
 * @return {Array} The input arr.
 */
export function asc(arr) {
    arr.sort(function (a, b) {
        return a - b;
    });
    return arr;
}

/**
 * Get precision
 * @param {number} val
 */
export function getPrecision(val) {
    val = +val;
    if (isNaN(val)) {
        return 0;
    }
    // It is much faster than methods converting number to string as follows
    //      var tmp = val.toString();
    //      return tmp.length - 1 - tmp.indexOf('.');
    // especially when precision is low
    var e = 1;
    var count = 0;
    while (Math.round(val * e) / e !== val) {
        e *= 10;
        count++;
    }
    return count;
}

/**
 * @param {string|number} val
 * @return {number}
 */
export function getPrecisionSafe(val) {
    var str = val.toString();

    // Consider scientific notation: '3.4e-12' '3.4e+12'
    var eIndex = str.indexOf('e');
    if (eIndex > 0) {
        var precision = +str.slice(eIndex + 1);
        return precision < 0 ? -precision : 0;
    }
    else {
        var dotIndex = str.indexOf('.');
        return dotIndex < 0 ? 0 : str.length - 1 - dotIndex;
    }
}

/**
 * Minimal dicernible data precisioin according to a single pixel.
 *
 * @param {Array.<number>} dataExtent
 * @param {Array.<number>} pixelExtent
 * @return {number} precision
 */
export function getPixelPrecision(dataExtent, pixelExtent) {
    var log = Math.log;
    var LN10 = Math.LN10;
    var dataQuantity = Math.floor(log(dataExtent[1] - dataExtent[0]) / LN10);
    var sizeQuantity = Math.round(log(Math.abs(pixelExtent[1] - pixelExtent[0])) / LN10);
    // toFixed() digits argument must be between 0 and 20.
    var precision = Math.min(Math.max(-dataQuantity + sizeQuantity, 0), 20);
    return !isFinite(precision) ? 20 : precision;
}

/**
 * Get a data of given precision, assuring the sum of percentages
 * in valueList is 1.
 * The largest remainer method is used.
 * https://en.wikipedia.org/wiki/Largest_remainder_method
 *
 * @param {Array.<number>} valueList a list of all data
 * @param {number} idx index of the data to be processed in valueList
 * @param {number} precision integer number showing digits of precision
 * @return {number} percent ranging from 0 to 100
 */
export function getPercentWithPrecision(valueList, idx, precision) {
    if (!valueList[idx]) {
        return 0;
    }

    var sum = zrUtil.reduce(valueList, function (acc, val) {
        return acc + (isNaN(val) ? 0 : val);
    }, 0);
    if (sum === 0) {
        return 0;
    }

    var digits = Math.pow(10, precision);
    var votesPerQuota = zrUtil.map(valueList, function (val) {
        return (isNaN(val) ? 0 : val) / sum * digits * 100;
    });
    var targetSeats = digits * 100;

    var seats = zrUtil.map(votesPerQuota, function (votes) {
        // Assign automatic seats.
        return Math.floor(votes);
    });
    var currentSum = zrUtil.reduce(seats, function (acc, val) {
        return acc + val;
    }, 0);

    var remainder = zrUtil.map(votesPerQuota, function (votes, idx) {
        return votes - seats[idx];
    });

    // Has remainding votes.
    while (currentSum < targetSeats) {
        // Find next largest remainder.
        var max = Number.NEGATIVE_INFINITY;
        var maxId = null;
        for (var i = 0, len = remainder.length; i < len; ++i) {
            if (remainder[i] > max) {
                max = remainder[i];
                maxId = i;
            }
        }

        // Add a vote to max remainder.
        ++seats[maxId];
        remainder[maxId] = 0;
        ++currentSum;
    }

    return seats[idx] / digits;
}

// Number.MAX_SAFE_INTEGER, ie do not support.
export var MAX_SAFE_INTEGER = 9007199254740991;

/**
 * To 0 - 2 * PI, considering negative radian.
 * @param {number} radian
 * @return {number}
 */
export function remRadian(radian) {
    var pi2 = Math.PI * 2;
    return (radian % pi2 + pi2) % pi2;
}

/**
 * @param {type} radian
 * @return {boolean}
 */
export function isRadianAroundZero(val) {
    return val > -RADIAN_EPSILON && val < RADIAN_EPSILON;
}

/* eslint-disable */
var TIME_REG = /^(?:(\d{4})(?:[-\/](\d{1,2})(?:[-\/](\d{1,2})(?:[T ](\d{1,2})(?::(\d\d)(?::(\d\d)(?:[.,](\d+))?)?)?(Z|[\+\-]\d\d:?\d\d)?)?)?)?)?$/; // jshint ignore:line
/* eslint-enable */

/**
 * @param {string|Date|number} value These values can be accepted:
 *   + An instance of Date, represent a time in its own time zone.
 *   + Or string in a subset of ISO 8601, only including:
 *     + only year, month, date: '2012-03', '2012-03-01', '2012-03-01 05', '2012-03-01 05:06',
 *     + separated with T or space: '2012-03-01T12:22:33.123', '2012-03-01 12:22:33.123',
 *     + time zone: '2012-03-01T12:22:33Z', '2012-03-01T12:22:33+8000', '2012-03-01T12:22:33-05:00',
 *     all of which will be treated as local time if time zone is not specified
 *     (see <https://momentjs.com/>).
 *   + Or other string format, including (all of which will be treated as loacal time):
 *     '2012', '2012-3-1', '2012/3/1', '2012/03/01',
 *     '2009/6/12 2:00', '2009/6/12 2:05:08', '2009/6/12 2:05:08.123'
 *   + a timestamp, which represent a time in UTC.
 * @return {Date} date
 */
export function parseDate(value) {
    if (value instanceof Date) {
        return value;
    }
    else if (typeof value === 'string') {
        // Different browsers parse date in different way, so we parse it manually.
        // Some other issues:
        // new Date('1970-01-01') is UTC,
        // new Date('1970/01/01') and new Date('1970-1-01') is local.
        // See issue #3623
        var match = TIME_REG.exec(value);

        if (!match) {
            // return Invalid Date.
            return new Date(NaN);
        }

        // Use local time when no timezone offset specifed.
        if (!match[8]) {
            // match[n] can only be string or undefined.
            // But take care of '12' + 1 => '121'.
            return new Date(
                +match[1],
                +(match[2] || 1) - 1,
                +match[3] || 1,
                +match[4] || 0,
                +(match[5] || 0),
                +match[6] || 0,
                +match[7] || 0
            );
        }
        // Timezoneoffset of Javascript Date has considered DST (Daylight Saving Time,
        // https://tc39.github.io/ecma262/#sec-daylight-saving-time-adjustment).
        // For example, system timezone is set as "Time Zone: America/Toronto",
        // then these code will get different result:
        // `new Date(1478411999999).getTimezoneOffset();  // get 240`
        // `new Date(1478412000000).getTimezoneOffset();  // get 300`
        // So we should not use `new Date`, but use `Date.UTC`.
        else {
            var hour = +match[4] || 0;
            if (match[8].toUpperCase() !== 'Z') {
                hour -= match[8].slice(0, 3);
            }
            return new Date(Date.UTC(
                +match[1],
                +(match[2] || 1) - 1,
                +match[3] || 1,
                hour,
                +(match[5] || 0),
                +match[6] || 0,
                +match[7] || 0
            ));
        }
    }
    else if (value == null) {
        return new Date(NaN);
    }

    return new Date(Math.round(value));
}

/**
 * Quantity of a number. e.g. 0.1, 1, 10, 100
 *
 * @param  {number} val
 * @return {number}
 */
export function quantity(val) {
    return Math.pow(10, quantityExponent(val));
}

/**
 * Exponent of the quantity of a number
 * e.g., 1234 equals to 1.234*10^3, so quantityExponent(1234) is 3
 *
 * @param  {number} val non-negative value
 * @return {number}
 */
export function quantityExponent(val) {
    if (val === 0) {
        return 0;
    }

    var exp = Math.floor(Math.log(val) / Math.LN10);
    /**
     * exp is expected to be the rounded-down result of the base-10 log of val.
     * But due to the precision loss with Math.log(val), we need to restore it
     * using 10^exp to make sure we can get val back from exp. #11249
     */
    if (val / Math.pow(10, exp) >= 10) {
        exp++;
    }
    return exp;
}

/**
 * find a “nice” number approximately equal to x. Round the number if round = true,
 * take ceiling if round = false. The primary observation is that the “nicest”
 * numbers in decimal are 1, 2, and 5, and all power-of-ten multiples of these numbers.
 *
 * See "Nice Numbers for Graph Labels" of Graphic Gems.
 *
 * @param  {number} val Non-negative value.
 * @param  {boolean} round
 * @return {number}
 */
export function nice(val, round) {
    var exponent = quantityExponent(val);
    var exp10 = Math.pow(10, exponent);
    var f = val / exp10; // 1 <= f < 10
    var nf;
    if (round) {
        if (f < 1.5) {
            nf = 1;
        }
        else if (f < 2.5) {
            nf = 2;
        }
        else if (f < 4) {
            nf = 3;
        }
        else if (f < 7) {
            nf = 5;
        }
        else {
            nf = 10;
        }
    }
    else {
        if (f < 1) {
            nf = 1;
        }
        else if (f < 2) {
            nf = 2;
        }
        else if (f < 3) {
            nf = 3;
        }
        else if (f < 5) {
            nf = 5;
        }
        else {
            nf = 10;
        }
    }
    val = nf * exp10;

    // Fix 3 * 0.1 === 0.30000000000000004 issue (see IEEE 754).
    // 20 is the uppper bound of toFixed.
    return exponent >= -20 ? +val.toFixed(exponent < 0 ? -exponent : 0) : val;
}

/**
 * This code was copied from "d3.js"
 * <https://github.com/d3/d3/blob/9cc9a875e636a1dcf36cc1e07bdf77e1ad6e2c74/src/arrays/quantile.js>.
 * See the license statement at the head of this file.
 * @param {Array.<number>} ascArr
 */
export function quantile(ascArr, p) {
    var H = (ascArr.length - 1) * p + 1;
    var h = Math.floor(H);
    var v = +ascArr[h - 1];
    var e = H - h;
    return e ? v + e * (ascArr[h] - v) : v;
}

/**
 * Order intervals asc, and split them when overlap.
 * expect(numberUtil.reformIntervals([
 *     {interval: [18, 62], close: [1, 1]},
 *     {interval: [-Infinity, -70], close: [0, 0]},
 *     {interval: [-70, -26], close: [1, 1]},
 *     {interval: [-26, 18], close: [1, 1]},
 *     {interval: [62, 150], close: [1, 1]},
 *     {interval: [106, 150], close: [1, 1]},
 *     {interval: [150, Infinity], close: [0, 0]}
 * ])).toEqual([
 *     {interval: [-Infinity, -70], close: [0, 0]},
 *     {interval: [-70, -26], close: [1, 1]},
 *     {interval: [-26, 18], close: [0, 1]},
 *     {interval: [18, 62], close: [0, 1]},
 *     {interval: [62, 150], close: [0, 1]},
 *     {interval: [150, Infinity], close: [0, 0]}
 * ]);
 * @param {Array.<Object>} list, where `close` mean open or close
 *        of the interval, and Infinity can be used.
 * @return {Array.<Object>} The origin list, which has been reformed.
 */
export function reformIntervals(list) {
    list.sort(function (a, b) {
        return littleThan(a, b, 0) ? -1 : 1;
    });

    var curr = -Infinity;
    var currClose = 1;
    for (var i = 0; i < list.length;) {
        var interval = list[i].interval;
        var close = list[i].close;

        for (var lg = 0; lg < 2; lg++) {
            if (interval[lg] <= curr) {
                interval[lg] = curr;
                close[lg] = !lg ? 1 - currClose : 1;
            }
            curr = interval[lg];
            currClose = close[lg];
        }

        if (interval[0] === interval[1] && close[0] * close[1] !== 1) {
            list.splice(i, 1);
        }
        else {
            i++;
        }
    }

    return list;

    function littleThan(a, b, lg) {
        return a.interval[lg] < b.interval[lg]
            || (
                a.interval[lg] === b.interval[lg]
                && (
                    (a.close[lg] - b.close[lg] === (!lg ? 1 : -1))
                    || (!lg && littleThan(a, b, 1))
                )
            );
    }
}

/**
 * parseFloat NaNs numeric-cast false positives (null|true|false|"")
 * ...but misinterprets leading-number strings, particularly hex literals ("0x...")
 * subtraction forces infinities to NaN
 *
 * @param {*} v
 * @return {boolean}
 */
export function isNumeric(v) {
    return v - parseFloat(v) >= 0;
}