Current File : //proc/self/root/opt/imunify360/venv/lib/python3.11/site-packages/Crypto/Math/_IntegerBase.py |
# ===================================================================
#
# Copyright (c) 2018, Helder Eijs <helderijs@gmail.com>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
import abc
from Crypto.Util.py3compat import iter_range, bord, bchr, ABC
from Crypto import Random
class IntegerBase(ABC):
# Conversions
@abc.abstractmethod
def __int__(self):
pass
@abc.abstractmethod
def __str__(self):
pass
@abc.abstractmethod
def __repr__(self):
pass
@abc.abstractmethod
def to_bytes(self, block_size=0, byteorder='big'):
pass
@staticmethod
@abc.abstractmethod
def from_bytes(byte_string, byteorder='big'):
pass
# Relations
@abc.abstractmethod
def __eq__(self, term):
pass
@abc.abstractmethod
def __ne__(self, term):
pass
@abc.abstractmethod
def __lt__(self, term):
pass
@abc.abstractmethod
def __le__(self, term):
pass
@abc.abstractmethod
def __gt__(self, term):
pass
@abc.abstractmethod
def __ge__(self, term):
pass
@abc.abstractmethod
def __nonzero__(self):
pass
__bool__ = __nonzero__
@abc.abstractmethod
def is_negative(self):
pass
# Arithmetic operations
@abc.abstractmethod
def __add__(self, term):
pass
@abc.abstractmethod
def __sub__(self, term):
pass
@abc.abstractmethod
def __mul__(self, factor):
pass
@abc.abstractmethod
def __floordiv__(self, divisor):
pass
@abc.abstractmethod
def __mod__(self, divisor):
pass
@abc.abstractmethod
def inplace_pow(self, exponent, modulus=None):
pass
@abc.abstractmethod
def __pow__(self, exponent, modulus=None):
pass
@abc.abstractmethod
def __abs__(self):
pass
@abc.abstractmethod
def sqrt(self, modulus=None):
pass
@abc.abstractmethod
def __iadd__(self, term):
pass
@abc.abstractmethod
def __isub__(self, term):
pass
@abc.abstractmethod
def __imul__(self, term):
pass
@abc.abstractmethod
def __imod__(self, term):
pass
# Boolean/bit operations
@abc.abstractmethod
def __and__(self, term):
pass
@abc.abstractmethod
def __or__(self, term):
pass
@abc.abstractmethod
def __rshift__(self, pos):
pass
@abc.abstractmethod
def __irshift__(self, pos):
pass
@abc.abstractmethod
def __lshift__(self, pos):
pass
@abc.abstractmethod
def __ilshift__(self, pos):
pass
@abc.abstractmethod
def get_bit(self, n):
pass
# Extra
@abc.abstractmethod
def is_odd(self):
pass
@abc.abstractmethod
def is_even(self):
pass
@abc.abstractmethod
def size_in_bits(self):
pass
@abc.abstractmethod
def size_in_bytes(self):
pass
@abc.abstractmethod
def is_perfect_square(self):
pass
@abc.abstractmethod
def fail_if_divisible_by(self, small_prime):
pass
@abc.abstractmethod
def multiply_accumulate(self, a, b):
pass
@abc.abstractmethod
def set(self, source):
pass
@abc.abstractmethod
def inplace_inverse(self, modulus):
pass
@abc.abstractmethod
def inverse(self, modulus):
pass
@abc.abstractmethod
def gcd(self, term):
pass
@abc.abstractmethod
def lcm(self, term):
pass
@staticmethod
@abc.abstractmethod
def jacobi_symbol(a, n):
pass
@staticmethod
def _tonelli_shanks(n, p):
"""Tonelli-shanks algorithm for computing the square root
of n modulo a prime p.
n must be in the range [0..p-1].
p must be at least even.
The return value r is the square root of modulo p. If non-zero,
another solution will also exist (p-r).
Note we cannot assume that p is really a prime: if it's not,
we can either raise an exception or return the correct value.
"""
# See https://rosettacode.org/wiki/Tonelli-Shanks_algorithm
if n in (0, 1):
return n
if p % 4 == 3:
root = pow(n, (p + 1) // 4, p)
if pow(root, 2, p) != n:
raise ValueError("Cannot compute square root")
return root
s = 1
q = (p - 1) // 2
while not (q & 1):
s += 1
q >>= 1
z = n.__class__(2)
while True:
euler = pow(z, (p - 1) // 2, p)
if euler == 1:
z += 1
continue
if euler == p - 1:
break
# Most probably p is not a prime
raise ValueError("Cannot compute square root")
m = s
c = pow(z, q, p)
t = pow(n, q, p)
r = pow(n, (q + 1) // 2, p)
while t != 1:
for i in iter_range(0, m):
if pow(t, 2**i, p) == 1:
break
if i == m:
raise ValueError("Cannot compute square root of %d mod %d" % (n, p))
b = pow(c, 2**(m - i - 1), p)
m = i
c = b**2 % p
t = (t * b**2) % p
r = (r * b) % p
if pow(r, 2, p) != n:
raise ValueError("Cannot compute square root")
return r
@classmethod
def random(cls, **kwargs):
"""Generate a random natural integer of a certain size.
:Keywords:
exact_bits : positive integer
The length in bits of the resulting random Integer number.
The number is guaranteed to fulfil the relation:
2^bits > result >= 2^(bits - 1)
max_bits : positive integer
The maximum length in bits of the resulting random Integer number.
The number is guaranteed to fulfil the relation:
2^bits > result >=0
randfunc : callable
A function that returns a random byte string. The length of the
byte string is passed as parameter. Optional.
If not provided (or ``None``), randomness is read from the system RNG.
:Return: a Integer object
"""
exact_bits = kwargs.pop("exact_bits", None)
max_bits = kwargs.pop("max_bits", None)
randfunc = kwargs.pop("randfunc", None)
if randfunc is None:
randfunc = Random.new().read
if exact_bits is None and max_bits is None:
raise ValueError("Either 'exact_bits' or 'max_bits' must be specified")
if exact_bits is not None and max_bits is not None:
raise ValueError("'exact_bits' and 'max_bits' are mutually exclusive")
bits = exact_bits or max_bits
bytes_needed = ((bits - 1) // 8) + 1
significant_bits_msb = 8 - (bytes_needed * 8 - bits)
msb = bord(randfunc(1)[0])
if exact_bits is not None:
msb |= 1 << (significant_bits_msb - 1)
msb &= (1 << significant_bits_msb) - 1
return cls.from_bytes(bchr(msb) + randfunc(bytes_needed - 1))
@classmethod
def random_range(cls, **kwargs):
"""Generate a random integer within a given internal.
:Keywords:
min_inclusive : integer
The lower end of the interval (inclusive).
max_inclusive : integer
The higher end of the interval (inclusive).
max_exclusive : integer
The higher end of the interval (exclusive).
randfunc : callable
A function that returns a random byte string. The length of the
byte string is passed as parameter. Optional.
If not provided (or ``None``), randomness is read from the system RNG.
:Returns:
An Integer randomly taken in the given interval.
"""
min_inclusive = kwargs.pop("min_inclusive", None)
max_inclusive = kwargs.pop("max_inclusive", None)
max_exclusive = kwargs.pop("max_exclusive", None)
randfunc = kwargs.pop("randfunc", None)
if kwargs:
raise ValueError("Unknown keywords: " + str(kwargs.keys))
if None not in (max_inclusive, max_exclusive):
raise ValueError("max_inclusive and max_exclusive cannot be both"
" specified")
if max_exclusive is not None:
max_inclusive = max_exclusive - 1
if None in (min_inclusive, max_inclusive):
raise ValueError("Missing keyword to identify the interval")
if randfunc is None:
randfunc = Random.new().read
norm_maximum = max_inclusive - min_inclusive
bits_needed = cls(norm_maximum).size_in_bits()
norm_candidate = -1
while not 0 <= norm_candidate <= norm_maximum:
norm_candidate = cls.random(
max_bits=bits_needed,
randfunc=randfunc
)
return norm_candidate + min_inclusive