Current File : /home/tradevaly/www/node_modules/fontkit/src/glyph/Path.js
import BBox from './BBox';

const SVG_COMMANDS = {
  moveTo: 'M',
  lineTo: 'L',
  quadraticCurveTo: 'Q',
  bezierCurveTo: 'C',
  closePath: 'Z'
};

/**
 * Path objects are returned by glyphs and represent the actual
 * vector outlines for each glyph in the font. Paths can be converted
 * to SVG path data strings, or to functions that can be applied to
 * render the path to a graphics context.
 */
export default class Path {
  constructor() {
    this.commands = [];
    this._bbox = null;
    this._cbox = null;
  }

  /**
   * Compiles the path to a JavaScript function that can be applied with
   * a graphics context in order to render the path.
   * @return {string}
   */
  toFunction() {
    return ctx => {
      this.commands.forEach(c => {
        return ctx[c.command].apply(ctx, c.args)
      })
    };
  }

  /**
   * Converts the path to an SVG path data string
   * @return {string}
   */
  toSVG() {
    let cmds = this.commands.map(c => {
      let args = c.args.map(arg => Math.round(arg * 100) / 100);
      return `${SVG_COMMANDS[c.command]}${args.join(' ')}`;
    });

    return cmds.join('');
  }

  /**
   * Gets the "control box" of a path.
   * This is like the bounding box, but it includes all points including
   * control points of bezier segments and is much faster to compute than
   * the real bounding box.
   * @type {BBox}
   */
  get cbox() {
    if (!this._cbox) {
      let cbox = new BBox;
      for (let command of this.commands) {
        for (let i = 0; i < command.args.length; i += 2) {
          cbox.addPoint(command.args[i], command.args[i + 1]);
        }
      }

      this._cbox = Object.freeze(cbox);
    }

    return this._cbox;
  }

  /**
   * Gets the exact bounding box of the path by evaluating curve segments.
   * Slower to compute than the control box, but more accurate.
   * @type {BBox}
   */
  get bbox() {
    if (this._bbox) {
      return this._bbox;
    }

    let bbox = new BBox;
    let cx = 0, cy = 0;

    let f = t => (
      Math.pow(1 - t, 3) * p0[i]
        + 3 * Math.pow(1 - t, 2) * t * p1[i]
        + 3 * (1 - t) * Math.pow(t, 2) * p2[i]
        + Math.pow(t, 3) * p3[i]
    );

    for (let c of this.commands) {
      switch (c.command) {
        case 'moveTo':
        case 'lineTo':
          let [x, y] = c.args;
          bbox.addPoint(x, y);
          cx = x;
          cy = y;
          break;

        case 'quadraticCurveTo':
        case 'bezierCurveTo':
          if (c.command === 'quadraticCurveTo') {
            // http://fontforge.org/bezier.html
            var [qp1x, qp1y, p3x, p3y] = c.args;
            var cp1x = cx + 2 / 3 * (qp1x - cx);    // CP1 = QP0 + 2/3 * (QP1-QP0)
            var cp1y = cy + 2 / 3 * (qp1y - cy);
            var cp2x = p3x + 2 / 3 * (qp1x - p3x);  // CP2 = QP2 + 2/3 * (QP1-QP2)
            var cp2y = p3y + 2 / 3 * (qp1y - p3y);
          } else {
            var [cp1x, cp1y, cp2x, cp2y, p3x, p3y] = c.args;
          }

          // http://blog.hackers-cafe.net/2009/06/how-to-calculate-bezier-curves-bounding.html
          bbox.addPoint(p3x, p3y);

          var p0 = [cx, cy];
          var p1 = [cp1x, cp1y];
          var p2 = [cp2x, cp2y];
          var p3 = [p3x, p3y];

          for (var i = 0; i <= 1; i++) {
            let b = 6 * p0[i] - 12 * p1[i] + 6 * p2[i];
            let a = -3 * p0[i] + 9 * p1[i] - 9 * p2[i] + 3 * p3[i];
            c = 3 * p1[i] - 3 * p0[i];

            if (a === 0) {
              if (b === 0) {
                continue;
              }

              let t = -c / b;
              if (0 < t && t < 1) {
                if (i === 0) {
                  bbox.addPoint(f(t), bbox.maxY);
                } else if (i === 1) {
                  bbox.addPoint(bbox.maxX, f(t));
                }
              }

              continue;
            }

            let b2ac = Math.pow(b, 2) - 4 * c * a;
            if (b2ac < 0) {
              continue;
            }

            let t1 = (-b + Math.sqrt(b2ac)) / (2 * a);
            if (0 < t1 && t1 < 1) {
              if (i === 0) {
                bbox.addPoint(f(t1), bbox.maxY);
              } else if (i === 1) {
                bbox.addPoint(bbox.maxX, f(t1));
              }
            }

            let t2 = (-b - Math.sqrt(b2ac)) / (2 * a);
            if (0 < t2 && t2 < 1) {
              if (i === 0) {
                bbox.addPoint(f(t2), bbox.maxY);
              } else if (i === 1) {
                bbox.addPoint(bbox.maxX, f(t2));
              }
            }
          }

          cx = p3x;
          cy = p3y;
          break;
      }
    }

    return this._bbox = Object.freeze(bbox);
  }

  /**
   * Applies a mapping function to each point in the path.
   * @param {function} fn
   * @return {Path}
   */
  mapPoints(fn) {
    let path = new Path;

    for (let c of this.commands) {
      let args = [];
      for (let i = 0; i < c.args.length; i += 2) {
        let [x, y] = fn(c.args[i], c.args[i + 1]);
        args.push(x, y);
      }

      path[c.command](...args);
    }

    return path;
  }

  /**
   * Transforms the path by the given matrix.
   */
  transform(m0, m1, m2, m3, m4, m5) {
    return this.mapPoints((x, y) => {
      x = m0 * x + m2 * y + m4;
      y = m1 * x + m3 * y + m5;
      return [x, y];
    });
  }

  /**
   * Translates the path by the given offset.
   */
  translate(x, y) {
    return this.transform(1, 0, 0, 1, x, y);
  }

  /**
   * Rotates the path by the given angle (in radians).
   */
  rotate(angle) {
    let cos = Math.cos(angle);
    let sin = Math.sin(angle);
    return this.transform(cos, sin, -sin, cos, 0, 0);
  }

  /**
   * Scales the path.
   */
  scale(scaleX, scaleY = scaleX) {
    return this.transform(scaleX, 0, 0, scaleY, 0, 0);
  }
}

for (let command of ['moveTo', 'lineTo', 'quadraticCurveTo', 'bezierCurveTo', 'closePath']) {
  Path.prototype[command] = function(...args) {
    this._bbox = this._cbox = null;
    this.commands.push({
      command,
      args
    });

    return this;
  };
}